

PAPER SOLUTION

JEE
MAIN
2026

From Meerut

JAN	SHIFT
24	1 st

Aryan Agarwal

Founder and CEO

CVPS INTEGRATED STAR COURSE

JEE MAIN 2026 ▶ LIVE PAPER DISCUSSION

#Q. The value of $\frac{\sqrt{3}\operatorname{cosec}20^\circ - \operatorname{sec}20^\circ}{\cos20^\circ\cos40^\circ\cos60^\circ\cos80^\circ}$ is

- A** 64
- B** 12
- C** 16
- D** 32

(Ans : A)

JEE MAIN 2026 PAPER DISCUSSION

#Q. The number of solutions for $x \in \mathbb{R}, x|x - 4| + |x - 1| - 2 = 0$

- A** 1
- B** 2
- C** 3
- D** 4

(Ans : A)

JEE MAIN 2026 ▶ LIVE PAPER DISCUSSION

#Q. Consider 10 data such that their mean is 10 and variance is 2. If one of the data α is removed and new data entry β is inserted. Now new mean is 10.1 and new variance is 1.99 then $(\alpha + \beta)$ is equal to

- A** 10
- B** 20
- C** 1
- D** 2

(Ans : B)

JEE MAIN 2026 ▶ LIVE PAPER DISCUSSION

#Q. If $F(t) = \int \frac{1-\sin(\ln t)}{1-\cos(\ln t)} dt$ and $F(e^{\pi/2}) = -e^{\pi/2}$ then $F(e^{\pi/4})$ is

- A** $(-1 - \sqrt{2})e^{\frac{\pi}{4}}$
- B** $(1 - \sqrt{2})e^{\frac{\pi}{4}}$
- C** $(1 + \sqrt{2})e^{\frac{\pi}{4}}$
- D** $(-2 - \sqrt{2})e^{\frac{\pi}{4}}$

(Ans : A)

JEE MAIN 2026 ▶ LIVE PAPER DISCUSSION

#Q. consider an A.P $a_1, a_2 \dots a_n$; $a_1 > 0, a_2 - a_1 = \frac{-3}{4}, a_n = \frac{1}{4}a_1$ and $\sum_{i=1}^n a_i = \frac{525}{2}$ then $\sum_{i=1}^{17} a_i$ is equal to

- A** 276
- B** 238
- C** 189
- D** 258

(Ans : B)

JEE MAIN 2026 ▶ LIVE PAPER DISCUSSION

#Q. If the function $f(x) = \frac{e^x(e^{\tan x - x} - 1) + \log_e(\sec x + \tan x) - x}{\tan x - x}$ is continuous at $x = 0$, then the value of $f(0)$ is equal to

- A** 1
- B** $1/2$
- C** $3/2$
- D** $2/3$

(Ans : C)

JEE MAIN 2026 ▶ LIVE PAPER DISCUSSION

#Q. Consider a sequence 729, 81, 9, 1,

Let P_n = product of first n terms of the given sequence and $\sum_{n=1}^{40} (P_n)^{\frac{1}{n}} = \frac{3^{\alpha}-1}{2 \times 3^{\beta}}$.

Then the value of $\alpha + \beta$ is

- A** 73
- B** 75
- C** 76
- D** 81

(Ans : A)

JEE MAIN 2026 PAPER DISCUSSION

#Q. Number of matrices A of order 3×2 such that all of its elements are from the set $\{-2, -1, 0, 1, 2\}$ such that trace of AA^T is 5, is equal to

- A** 120
- B** 312
- C** 192
- D** 126

(Ans : B)

JEE MAIN 2026 ▶ LIVE PAPER DISCUSSION

#Q. Out of 100 bulbs, 10 are defective and 90 are non-defective. If the probability of finding 7 defective bulbs out of 8 draws, with replacement, is $\frac{K}{10^8}$, then the value of K is

- A** 69
- B** 72
- C** 75
- D** 96

(Ans : B)

JEE MAIN 2026 ▶ LIVE PAPER DISCUSSION

#Q. Let a circle passes through points $A(-\sqrt{2}\alpha, 0)$, $B(0, \sqrt{3}\beta)$ and $O(0,0)$ such that its radius is 4. Then the radius of locus of centroid of triangle OAB is

- A** $2/3$
- B** $8/3$
- C** $4/3$
- D** $11/3$

(Ans : B)

JEE MAIN 2026 ▶ LIVE PAPER DISCUSSION

#Q. Let $\cot\theta = \frac{5}{12}$ and $\theta \in \left(\pi, \frac{3\pi}{2}\right)$.

Then the value of $\cos 7\theta \left(\sin \frac{13\theta}{2} + \cos \frac{13\theta}{2}\right) + \sin 7\theta \left(\sin \frac{13\theta}{2} - \cos \frac{13\theta}{2}\right)$ is

- A** $-\frac{1}{\sqrt{13}}$
- B** $\frac{1}{\sqrt{13}}$
- C** $-\frac{5}{\sqrt{13}}$
- D** $\frac{5}{\sqrt{13}}$

(Ans : C)

JEE MAIN 2026 PAPER DISCUSSION

#Q. Let $\left| \frac{z-6i}{z-2i} \right| = 1$, $\left| \frac{z-8+2i}{z+2i} \right| = \frac{3}{5}$ then if ω satisfy both equation then find $\sum |\omega^2|$.

- A** 385
- B** 386
- C** 384
- D** 387

(Ans : A)

JEE MAIN 2026 PAPER DISCUSSION

#Q. If $S = \frac{1}{25!} + \frac{1}{2313!} + \frac{1}{21!5!} + \dots$ upto 13 terms. Then $13S = \frac{2^\alpha}{\beta!}$, then $\alpha + \beta$ is

(Ans : 49)

JEE MAIN 2026 ▶ LIVE PAPER DISCUSSION

#Q. A line passing through point $P(1,1,1)$, which is perpendicular to $\frac{x-17}{1} = \frac{y-71}{1} = \frac{z}{0}$ and $\frac{x-4}{4} = \frac{y-1}{1} = \frac{z-1}{1}$. Let the line intersect the $y - z$ plane at point Q . Another line parallel to L and passing through $s(1,0, -1)$ intersect another plane at point R . Then the square of area of parallelogram $PQRS$ is

- A** 11
- B** 12
- C** 13
- D** 6

(Ans : D)

JEE MAIN 2026 ▶ LIVE PAPER DISCUSSION

#Q. Let A_1 be the area enclosed by $y = x^2 + 2$, **y-axis** and $x + y = 8$ in first quadrant and
Let A_2 be the area enclosed by $y = x^2 + 2$, $y^2 = x$, $x = 2$ and **y-axis**, then the value of $A_1 - A_2$ is

- A** $\frac{4+8\sqrt{2}}{3}$
- B** $\frac{2+4\sqrt{2}}{3}$
- C** $\frac{8+2\sqrt{2}}{3}$
- D** $\frac{8-2\sqrt{2}}{3}$

(Ans : B)

JEE MAIN 2026 ▶ LIVE PAPER DISCUSSION

#Q.

$$E_1: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

$$E_2: \frac{x^2}{A^2} + \frac{y^2}{B^2} = 1$$

Let eccentricity of both E_1 & E_2 be $\frac{4}{5}$, $2l_1^2 = 9l_2^2$ where l_1 and l_2 are the length of latus rectum of E_1 & E_2 respectively. Distance between the foci of E_1 be 8 then distance between foci of ellipse E_2 is

A $32/5$

B $16/5$

C $8/5$

D $4/5$

(Ans : A)

JEE MAIN 2026 LIVE PAPER DISCUSSION

#Q. Find the number of numbers greater than 5000 and less than 9000, formed by using numbers 0, 1, 2, 5, 9 with repetition allowed and divisible by 3.

- A** 31
- B** 42
- C** 48
- D** 52

(Ans : B)